

European Technical Assessment

ETA 22/0822 of 13/01/2023

(English language translation, the original version in Czech language)

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product | SCELLEMENT VINYLESTERE FIXH

Product family to which the construction product belongs

Product area code: 33
Bonded anchor for use in concrete

Manufacturer SOGEDESCA

10 Rue General Plessier

Lyon, 69002 France

Manufacturing plant(s)

Plant A

This European Technical Assessment

contains

26 pages including 23 Annexes which form an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-01-0601 Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The SCELLEMENT VINYLESTERE FIXH for cracked and uncracked concrete is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel elements consists of a commercial threaded rods with a hexagon nut and a washer or reinforcing bar.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	Annex C 1, C 2, C 3, C 5
(static and quasi-static loading)	Affilex C 1, C 2, C 3, C 3
Characteristic resistance to shear load	Annex C 1, C 4, C 6
(static and quasi-static loading)	Affilex C 1, C 4, C 6
Displacements under short term and long term loading	Annex C 7, C 8
Durability	Annex B 1
Characteristic resistance and displacements	Annex C 9, C 10, C 11
for seismic performance categories C1 and C2	Allilex C 9, C 10, C 11

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

Product Intended use Level or class

Metal anchors for use in concrete contributes to the stability of the construction works) or heavy units

Level or class

System

Class

_

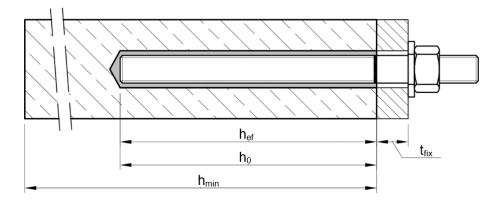
Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

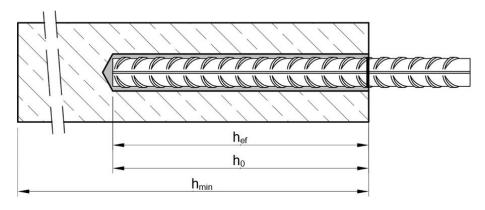
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 13.01.2023

By


Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

_


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Installation threaded rod M8 up to M24

prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø25

 t_{fix} = thickness of fixture

 ${\color{blue} h_{ef}} = {\color{blue} effective embedment depth} \ {\color{blue} h_{min}} = {\color{blue} minimum thickness of member}$

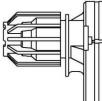
 h_0 = depth of drill hole

Product description Installed conditions

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

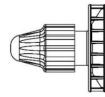

Imprint:

SCELLEMENT VINYLESTERE FIXH

Processing notes, charge-code, shelf life, hazard-code, curingand processing time (depending on the temperature), optional with travel scale

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

SCELLEMENT VINYLESTERE FIXH

Processing notes, charge-code, shelf life, hazard-code, curingand processing time (depending on the temperature), optional with travel scale

Foil Tube Cartridge:

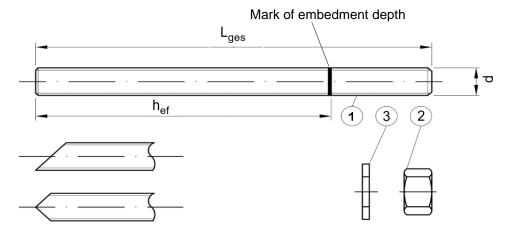
165 ml and 300 ml

Imprint:

SCELLEMENT VINYLESTERE FIXH

Processing notes, charge-code, shelf life, hazard-code, curingand processing time (depending on the temperature), optional with travel scale

Static mixer M17



SCELLEMENT VINYLESTERE FIXH for concrete

Product description

Injection system

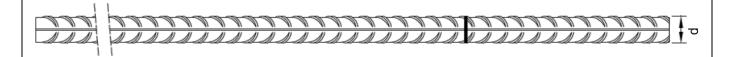
Threaded rod M8 up to M24 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Filling washer KSW

Mixer reduction nozzle KSM


SCELLEMENT VINYLESTERE FIXH for concrete

Product description

Threaded rod, filling washer and mixer reduction nozzle

Tak	ole A1: Material	S					
Part	Designation	Material					
	I, zinc plated (Steel acc. t		r EN	10263:2001)			
-	hot-dip galvanized ≥ 40	m acc. to EN ISO 404 μm acc. to EN ISO 146 μm acc. to EN ISO 176	1:200	9 and EN ISO 10684:200- 16			
		Property class		Characteristic steel ultimate tensile strength		1	Elongation a fracture
				f _{uk} = 400 N/mm ²	$f_{yk} = 240 \text{ N/m}$		$A_5 > 8\%$
1	Anchor rod		4.8	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/m}$	ım²	$A_5 > 8\%$
•	7	acc. to	5.6	f _{uk} = 500 N/mm ²	$f_{vk} = 300 \text{ N/m}$	ım²	A ₅ > 8%
		EN ISO 898-1:2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/m	ım²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm²	f _{vk} = 640 N/m	ım²	$A_5 > 12\%^{1)}$
			4	for anchor rod class 4.6	,		3 11
2	Hexagon nut	acc. to	5	for anchor rod class 5.6			
	· ·	EN ISO 898-2:2012	8	for anchor rod class 8.8			
За	Washer			alvanized or sherardized			
				ISO 7089:2000, EN ISO	7093:2000 or	EN ISO	7094:2000)
3b	Filling washer	· ·		alvanized or sherardized	10000 1 0011		
Stair	nless steel A2 (Material 1. nless steel A4 (Material 1. n corrosion resistance st	.4401 / 1.4404 / 1.4571	/ 1.43	62 or 1.4578, acc. to EN	10088-1:2014)		
		Property class		Characteristic steel ultimate tensile strength	Characteristic		Elongation at fracture
1	Anchor rod ²⁾	acc. to EN ISO 3506-1:2009	50	f _{uk} = 500 N/mm ²	$f_{vk} = 210 \text{ N/m}$	ım²	A ₅ > 8%
'			70	f _{uk} = 700 N/mm²	f _{vk} = 450 N/m	ım²	$A_5 > 12\%^{1)}$
			80	f _{uk} = 800 N/mm ²	f _{vk} = 600 N/m		$A_5 > 12\%^{1}$
			50	for anchor rod class 50	Tyk COOT4711		75 1270
2	Hexagon nut ²⁾	acc. to	70	for anchor rod class 70			
_	Troxagon nat	EN ISO 3506-1:2009					
3a	Washer	A4: Material 1.4401, 1 HCR: Material 1.4529	.4404 or 1.4	for anchor rod class 80 / 1.4307 / 1.4567 or 1.45 · / 1.4571 / 1.4362 or 1.45 \$565, acc. to EN 10088-1: I ISO 7089:2000, EN ISO	578, EN 10088 2014	3-1:2014	
3b	Filling washer	` *		rosion resistance steel			
	A ₅ > 8% fracture elongation						
2) _F	Property class 80 only for sta	ainless steel A4 and high	corros	sion resistant steel HCR			
Pro	ELLEMENT VINYLESTE duct description terials	RE FIXH for concrete)			An	nex A 4

Reinforcing bar: ø8 up to ø25

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05 φ ≤ h_{rib} ≤ 0,07 φ
 (d: nominal diameter of the bar; h_{rib}: Rib height of the bar)

Table A2: Materials Reinforcing bar

Part	Designation	Material					
Reba	Rebar						
3	LEN 1992-1-1:2004+AC:2018 Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCL according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Product description Materials reinforcing bar

Specifications of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working lif	e 50 years	Working life 100 years			
Base material	uncracked concrete	cracked concrete	uncracked concrete	cracked concrete		
HD: Hammer drilling CD: Compressed air drilling	M8 to M24 Ø 8 to Ø 25	M8 to M16	No performance assessed	No performance assessed		
Temperature Range:	I: -40°C to II: -40°C to		1000	o +40°C¹) o +80°C²)		

Fasteners subject to (seismic action):

	Performance Category C1	Performance Category C2
Base material	uncracked and cracked concrete	uncracked and cracked concrete
HD: Hammer drilling CD: Compressed air drilling	M8 to M16	M12 to M16
Temperature Range:	I: -40° C to $+40^{\circ}$ C ¹⁾ II: -40° C to $+80^{\circ}$ C ²⁾	I: -40°C to +40°C¹) II: -40°C to +80°C²)

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer drill (HD) or compressed air drill mode (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

SCELLEMENT VINYLESTERE FIXH for concrete	
Intended use Specifications	Annex B 1

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

Table B1: Installation parameters for threaded rod									
Anchor size				M8	M10	M12	M16	M20	M24
Diameter of element		$d = d_{nom}$	[mm]	8	10	12	16	20	24
Nominal drill hole diame	ter	d_0	[mm]	10	12	14	18	24	28
Effective ambadment depth		h _{ef,min}	[mm]	60	60	70	80	90	96
Effective embedment de	:ptii	h _{ef,max}	[mm]	160	200	240	320	400	480
Diameter of clearance	Prepositione	d installation d _f ≤	[mm]	9	12	14	18	22	26
hole in the fixture	Push throug	h installation d _f	[mm]	12	14	16	20	24	30
Maximum torque momei	Maximum torque moment max T _{inst} ≤		[Nm]	10	20	40	80	120	160
Minimum thickness of member		h _{min}	[mm]	h _{ef} +	30 mm ≥ 1	00 mm		h _{ef} + 2d ₀	
Minimum spacing s _{min}		[mm]	40	50	60	80	100	120	
Minimum edge distance		c _{min}	[mm]	40	50	60	80	100	120

Table B2: Installation parameters for rebar

Anchor size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25
Nominal drill hole diameter	d_0	[mm]	12	14	16	18	20	25	32
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	100
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500
Minimum thickness of member	h _{min}	[mm]		0 mm ≥ mm	h _{ef} + 2d ₀				
Minimum spacing	s _{min}	[mm]	40	50	60	70	80	100	130
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	130

SCELLEMENT VINYLESTERE FIXH for concrete	
Intended use Installation parameters	Annex B 2

Table B3: Parameter cleaning and installation tools										
Threaded rod	Reinforcing bar	d ₀ Drill bit - Ø HD, HDB, CD	d _b Brush - Ø		d _{⊳,min} min. Brush - Ø					
[mm]	[mm]	[mm]		[mm]	[mm]					
M8	-	10	SC10	12	10,5					
M10	8	12	SC12	14	12,5					
M12	10	14	SC14	16	14,5					
-	12	16	SC16	18	16,5					
M16	14	18	SC18	20	18,5					
-	16	20	SC20	22	20,5					
M20	-	24	SC24	26	24,5					

25

28

32

Cleaning and installation tools

Hand pump

-

M24

(Volume 750 ml, $h_0 \ge 10 d_{nom}, d_0 \le 20 mm$)

20

25

Compressed air tool

(min 6 bar)

SC25

SC28

SC32

27

30

34

25,5

28,5

32,5

Brush SC

Brush extension SL

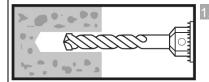
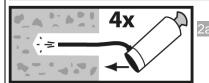

SCELLEMENT VINYLESTERE FIXH for concrete	
Intended use	Annex B 3
IParameter anchor and drill sizes, brushes and piston plugs	
Cleaning and Installation tools	

Table B4:	Worl	king and curi	ng time	
Temperati	ure in bas	se material	Maximum working time	Minimum curing time
	Т		^t work	t _{cure}
- 5°C	to	- 1°C	90 min	6 h
+ 0 °C	to	+ 4 °C	45 min	3 h
+ 5 °C	to	+ 9 °C	25 min	2 h
+ 10 °C	to	+ 14°C	20 min	100 min
+ 15 °C	to	+ 19°C	15 min	80 min
+ 20 °C	to	+ 29 °C	6 min	45 min
+ 30 °C	to	+ 34 °C	4 min	25 min
+ 35 °C	to	+ 39 °C	2 min	20 min
Cartrio	dge tempe	erature	+5°C up t	to +40°C

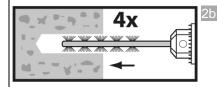
SCELLEMENT VINYLESTERE FIXH for concrete	
Intended use Working and curing time	Annex B 4

Installation instructions

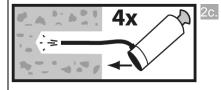
Drilling of the bore hole



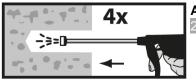
Hammer drilling (HD) / Compressed air drilling (CD)


Drill a hole to the required embedment depth.
Drill bit diameter according to Table B1 and B2.
Aborted drill holes shall be filled with mortar.
Proceed with Step 2 (MAC or CAC).

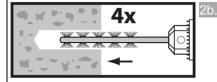
Manual Air Cleaning (MAC)


for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10d_{nom}$ with drilling method HD/CD

Attention! Remove standing water in the borehole before cleaning. Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 3).

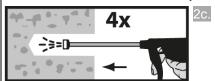

Attach brush SC according to Table B3 to a drilling machine or a cordless screwdriver. Brush the bore hole minimum 4x over the entire embedment depth in a twisting motion (if necessary, use a brush extension SL).

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 3).

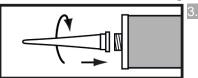

Compressed Air Cleaning (CAC):

All diameter with drilling method HD/CD

Attention! Standing water in the bore hole must be removed before cleaning.

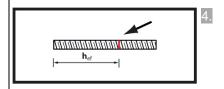

Blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 3) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Attach brush SC according to Table B3 to a drilling machine or a cordless screwdriver. Brush the bore hole minimum 4x over the entire embedment depth in a twisting motion. (If necessary, a brush extension SL shall be used.)

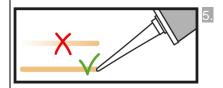

SCELLEMENT VINYLESTERE FIXH for concrete Intended use Installation instructions Annex B 5

Installation instructions (continuation)

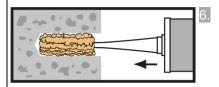
Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 3) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)


Cleaned bore hole has to be protected against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

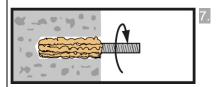
Screw on static-mixing nozzle M17 and load the cartridge into an appropriate dispensing tool.


If necessary, cut off the foil tube clip before use.

For every working interruption longer than the maximum working time t_{work} (Annex B 4) as well as for new cartridges, a new static-mixer shall be used.



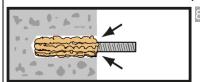
Mark embedment depth on the anchor rod.


The anchor rod shall be free of dirt, grease, oil or other foreign material.

Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey colour is shown (at least 3 full strokes; for foil tube cartridges min. 6 strokes).

Starting at bottom of the hole and fill the hole up to approximately 2/3 with adhesive (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time t_{work} (Annex B 4).

Insert the anchor rod while turning slightly up to the embedment mark.

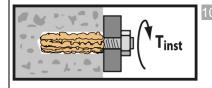

SCELLEMENT VINYLESTERE FIXH for concrete

Intended use

Installation instructions (continuation)

Annex B 6

Installation instructions (continuation)



Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.

Otherwise, the installation must be repeated starting from step 6 before the maximum working time $t_{\rm work}$ has expired.

Temperature related curing time t_{cure} (Annex B 4) must be observed. Do not move or load the fastener during curing time.

Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1).

In case of static requirements (e.g. seismic), fill the annular gap in the fixture with mortar (Annex A 2).

Therefore, replace the washer by the filling washer KSW and use the mixer reduction nozzle KSM.

SCELLEMENT VINYLESTERE FIXH for concrete	
--	--

Intended use

Installation instructions (continuation)

Annex B 7

Size	•				M8	M10	M12	M16	M20	M24	
Cros	ss section area	A _s	[mm ²]	36,6	58	84,3	157	245	353		
Cha	racteristic tension re	esistance, Steel failure 1)								
Stee	el, Property class 4.6 a	and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	
Stee	el, Property class 5.6 a	and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	
Stee	el, Property class 8.8		N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	
Stai	nless steel A2, A4 and	HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	
Staiı	nless steel A2, A4 and	HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	
Stai	nless steel A4 and HC	R, class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	
Cha	racteristic tension re	esistance, Partial safety									
Stee	el, Property class 4.6 a	and 5.6	γ _{Ms,N}	[-]			2	,0			
Stee	el, Property class 4.8,	5.8 and 8.8	$\gamma_{Ms,N}$	[-]	1,5						
Staiı	nless steel A2, A4 and	HCR, class 50	$\gamma_{Ms,N}$	[-]	2,86						
Staiı	nless steel A2, A4 and	HCR, class 70	$\gamma_{Ms,N}$	[-]			1,	87			
Stai	nless steel A4 and HC	R, class 80	$\gamma_{\text{Ms,N}}$	[-]	1,6						
Cha	racteristic shear res	istance, Steel failure 1)									
E	Steel, Property class	4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	
Without lever arm	Steel, Property class	5.6 and 5.8	$V^{\circ}_{Rk.s}$	[kN]	9 (8)	15 (13)	21	39	61	88	
eve	Steel, Property class	8.8	V ^o Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	
out I	Stainless steel A2, A	4 and HCR, class 50	V ^⁰ Rk.s	[kN]	9	15	21	39	61	88	
/itho	Stainless steel A2, A	4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	
>	Stainless steel A4 ar	nd HCR, class 80	V ^⁰ Rk.s	[kN]	15	23	34	63	98	141	
_	Steel, Property class	4.6 and 4.8	M ^⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	
ever arm	Steel, Property class	5.6 and 5.8	M⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	
ver	Steel, Property class	8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	
_	Stainless steel A2, A	4 and HCR, class 50	$M^0_{Rk,s}$	[Nm]	19	37	66	167	325	561	
With	Stainless steel A2, A	4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	
	Stainless steel A4 a	nd HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	
Cha	racteristic shear res	istance, Partial safety fa									
Stee	el, Property class 4.6 a	and 5.6	$\gamma_{Ms,V}$	[-]			1,	67			
Stee	el, Property class 4.8,	5.8 and 8.8	$\gamma_{Ms,V}$	[-]			1,	25		·	
Stail	nless steel A2, A4 and	HCR, class 50 50	γ _{Ms,V}	[-]			2,	38			
Stai	nless steel A2, A4 and	HCR, class 50 70	γ _{Ms,V}	[-]			1,	56			
<u> </u>	nless steel A4 and HC	R class 80	γ _{Ms,V}	[-]		-	1	33	_		

Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
 In absence of national regulation

SCELLEMENT VINYLESTERE FIXH for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: C	haracteristic val	ues of to	ension l	oads under static and quasi-static action
Anchor size				All anchors types and sizes
Concrete cone fai	ilure			
Uncracked concret	k _{ucr,N}	[-]	11,0	
Cracked concrete	k _{cr,N}	7,7		
Edge distance	c _{cr,N}	[mm]	1,5 h _{ef}	
Axial distance	s _{cr,N}	[mm]	2 c _{cr,N}	
Splitting				
	h/h _{ef} ≥ 2,0		[mm]	1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}		$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

SCELLEMENT VINYLESTERE FIXH for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 2

Stee	hor s	size threaded	l rod			M8	M10	M12	M16	M20	M24				
	el fail	lure		1											
Cha	racte	ristic tension	resistance	$N_{Rk,s}$	[kN]		A_s	• f _{uk} (or s	ee Table	C1)					
Part	ial fa	ctor		$\gamma_{Ms,N}$	[-]			See Ta	able C1						
Con	nbin	ed pull-out	and concrete failure												
Cha	racte	ristic bond res	sistance in uncracked co	oncrete C	20/25										
ge	l:	40°C/24°C				8,5	8,0	8,0	8,0	8,0	8,0				
e ran	— II:	80°C/50°C	Dry and wet concrete			6,5	6,0	6,0	6,0	6,0	6,0				
eratur	 I:	40°C/24°C		^τ Rk,ucr	[N/mm²]	8,5	8,0	8,0	8,0	8,0	8,0				
Temperature range	—— II:	80°C/50°C	Flooded bore hole		-	6,5	6,0	6,0	6,0	6,0	6,0				
			sistance in cracked cond	croto C20	/25	0,0	0,0	0,0	0,0	0,0	0,0				
			sistance in cracked cont)/23 	4.5	4.5	4.5	4.5						
ange	l: —	40°C/24°C	Dry and wet concrete			4,5	4,5	4,5	4,5	_					
ture r	II: —	80°C/50°C		τ _{Rk,cr}	[N/mm²] -	3,5	3,5	3,5	3,5	No perfo					
Temperature range	l: 	40°C/24°C	Flooded bore hole			4,5	4,5	4,5	4,5	asse	ssed				
Ten	II:	80°C/50°C				3,5	3,5	3,5	3,5						
Increasing factor for uncracked concrete				Ψc	[-]				20) 0,2						
			acked concrete	Ψc	[-]				20) ^{0,1}						
		eristic bond res rete strength o	sistance depending on class		$\tau_{Rk,ucr} =$	$Ψ_c • τ_{Rk,ucr,(C20/25)}$ $Ψ_c • τ_{Rk,cr,(C20/25)}$									
		e cone failure			$\tau_{Rk,cr} =$			Ψc 'Rk,	cr,(C20/25)					
		parameter	<u></u>					See Ta	able C2						
	tting														
Rele	evant	parameter						See Ta	able C2						
Inst	allati	ion factor													
Dry	and v	wet concrete		ν	[-]			1	,2						
Floo	ded	bore hole		γ _{inst}	[-]			1	,2						

Anchor size threaded rod		M8	M10	M12	M16	M20	M24			
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8 V ⁰ Rk,s [kN]				0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)						
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	$\gamma_{Ms,V}$	[-]	See Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]		1,2 •	Wel • fuk (o	r see Table	e C1)			
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935		
Partial factor	γ _{Ms,V}	[-]			See Ta	ble C1				
Concrete pry-out failure										
Factor	k ₈	[-]	2,0							
Installation factor	γ_{inst}	[-]	1,0							
Concrete edge failure										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom})							
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24		
Installation factor	γinst	[-]	1,0							

SCELLEMENT VINYLESTERE FIXH for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Anchor size reinforcing bar						Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25				
Stee	el fail	lure			'			l			l					
Characteristic tension resistance N					[kN]				A _s ·f _{uk} ¹⁾							
Cros	ss se	ction area		A _s	[mm²]	50 79 113 154 201 314 4						491				
Part	ial fa	ctor		γ _{Ms,N}	[-]		1	<u> </u>	1,4 ²⁾		<u> </u>					
Con	nbin	ed pull-out a	and concrete failu	re	l l											
Cha	racte	ristic bond res	sistance in uncracked	d concret	te C20/25											
ge	l:	40°C/24°C	Dry and wet			7,0	7,0	7,0	7,0	6,5	6,5	6,5				
re ran	II:	80°C/50°C	concrete			5,5	5,5	5,5	5,5	5,5	5,0	5,0				
Temperature range	l:	40°C/24°C		^τ Rk,ucr	^τ Rk,ucr	^τ Rk,ucr	^τ Rk,ucr	^τ Rk,ucr	[N/mm²]	7,0	7,0	7,0	7,0	6,5	6,5	6,5
Temp	II:	80°C/50°C	Flooded bore hole			5,5	5,5	5,5	5,5	5,5	5,0	5,0				
Incre	easin	g factor for ur	ncracked concrete	Ψc	[-]	(f _{ck} / 20) ^{0,1}										
		eristic bond resoncrete streng	sistance depending th class		τ _{Rk,ucr} =	Ψ _c • τ _{Rk,ucr,(C20/25)}										
Con	crete	e cone failure)													
Rele	evant	parameter						Se	e Table	C2						
Spli	tting															
Relevant parameter				See Table C2												
Inst	allati	ion factor														
Dry	and v	wet concrete		γ:	[-]				1,2							
Floo	ded	bore hole		γinst	[-]				1,2							

²⁾ in absence of national regulation

SCELLEMENT VINYLESTERE FIXH for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure without lever arm									
Characteristic shear resistance	V ⁰ Rk,s	[kN]			0,5	50 · A _s · f	uk ¹⁾		
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491
Partial factor	$\gamma_{Ms,V}$	[-]	1,52)						
Ductility factor	k ₇	[-]	1,0						
Steel failure with lever arm									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,	2 • W _{el} • f _u	ık ¹⁾		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534
Partial factor	γ _{Ms,V}	[-]				1,5 ²⁾			
Concrete pry-out failure									
Factor	k ₈	[-]				2,0			
Installation factor	γ _{inst}	[-]				1,0			
Concrete edge failure									
Effective length of fastener	I _f	[mm]			min (h _{ef} ;	12 • d _{nom})			min (h _{ef}
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25
Installation factor	γ _{inst}	[-]		•	•	1,0		•	

 $^{^{1)}\,\}rm f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

SCELLEMENT VINYLESTERE FIXH for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Table C7: Disp	lacement	under tension l	oad ¹⁾					
Anchor size threaded	rod		M8	M10	M12	M16	M20	M24
Uncracked concrete (C20/25 unde	r static and quasi-st	atic action					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,08	0,10
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,08	0,08	0,08	0,08	0,10
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,05
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,17	0,17	0,17	0,17	0,17
Cracked concrete C20	0/25 under s	tatic and quasi-stati	c action					
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,07	0,08	0,07	0,08		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,13	0,11	0,11	0,10	No perfo	rmance
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,09	0,08	0,07	0,09	asse	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,17	0,14	0,14	0,13		

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

 τ : action bond stress for tension

Table C8: Displacement under shear load¹⁾

Anchor size thread	ed rod		M8	M10	M12	M16	M20	M24
Uncracked concrete C20/25 under static and quasi-static action								
All temperature	δ _{V0} -factor	[mm/kN]	0,02	0,02	0,01	0,01	0,01	0,01
ranges	δ _{V∞} -factor	[mm/kN]	0,03	0,02	0,02	0,01	0,01	0,01
Cracked concrete	C20/25 unde	r static and quas	i-static acti	ion				
All temperature	δ _{V0} -factor	[mm/kN]	0,05	0,04	0,03	0,01	No performance	
ranges	δ _{V∞} -factor	[mm/kN]	0,07	0,06	0,04	0,02	asse	ssed

1) Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

SCELLEMENT VINYLESTERE FIXH for concrete	
Performances Displacements under static and quasi-static action	Annex C 7

Table C9: Disp	lacement	under tensio	n load ¹⁾)						
Anchor size reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25								Ø 25		
Uncracked concrete C20/25 under static and quasi-static action										
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,06	0,02	0,03	0,05	0,06	0,06	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,08	0,08	0,08	0,08	0,08	0,08	0,08	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,03	0,06	0,02	0,03	0,05	0,06	0,06	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,15	0,15	0,15	0,16	0,16	0,16	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Table C10: Displacement under shear load¹⁾

Anchor size reinford	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25		
Uncracked concrete C20/25 under static and quasi-static action									
All temperature	δ _{v0} -factor	[mm/kN]	0,04	0,04	0,01	0,01	0,01	0,01	0,01
ranges	δ _{V∞} -factor	[mm/kN]	0,05	0,06	0,02	0,02	0,02	0,02	0,02

1) Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

SCELLEMENT VINYLESTERE FIXH for concrete

Performances

Displacements under static and quasi-static action

Annex C 8

Characteristic tension resistance Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and under the second pull-out and concrete failure Characteristic bond resistance in cracked and under the second pull-out and concrete failure Characteristic bond resistance in cracked and under the second pull-out and concrete failure Characteristic tension resistance Dry and wet concrete Flooded bore hole	N _{Rk,s,C1} γ _{Ms,N}	[kN]			M12	M16
Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and unconcrete failure	γ _{Ms,N}	[kN]				
Combined pull-out and concrete failure Characteristic bond resistance in cracked and und					$N_{Rk,s}$	
Characteristic bond resistance in cracked and un	cracked co	[-]		See Ta	able C1	
1 4000/0400	cracked co					
I: 40°C/24°C Dry and wet concrete		ncrete C20/2				1
II: 80°C/50°C			2,30	2,25	2,30	2,20
Φ φ Ι· 40°C/24°C	TD1 01	[N/mm²] —	1,85	1,80	1,80	1,75
Ēā" 70 0/47 0	^τ Rk,C1	[14/11111]	2,30	2,25	2,30	2,20
Flooded bore hole			1,85	1,80	1,80	1,75
Increasing factor for concrete	Ψς	[-]		1	,0	I
Characteristic bond resistance depending on the						
concrete strength class		τ _{Rk,C1} =		ψ _c • τ _{Rk,0}	J1,(C20/25)	
Installation factor		<u> </u>			2	
Dry and wet concrete Flooded bore hole	γ _{inst}	[-]	1,2			
(Performance category	C2)					40
Analysis denoted and			IVI			
				12	IVI	16
Steel failure				12	IVI	16
Steel failure Characteristic tension resistance Steel, strength class 8.8	N _{Rk,s,C2}	[kN]			N _{Rk,s}	16
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70				1,0 •	N _{Rk,s}	16
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor	$N_{Rk,s,C2}$ $\gamma_{Ms,N}$	[kN]			N _{Rk,s}	16
Anchor size threaded rod Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure	γ _{Ms,N}	[-]		1,0 •	N _{Rk,s}	16
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and unit	γ _{Ms,N}	[-]	25	1,0 · See Ta	N _{Rk,s}	
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and under the concrete failure	γ _{Ms,N}	[-]	25 0,	1,0 • See Ta	N _{Rk,s} able C1	95
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and under the concrete failure	γ _{Ms,N}	[-]	25 0, 0,	1,0 · See Ta 75	N _{Rk,s} able C1 0, 0,	95 75
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and unit I: 40°C/24°C	γ _{Ms,N}	[-]	25 0, 0,	1,0 • See Ta	N _{Rk,s} able C1 0, 0,	95
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and under the concrete failure	γ _{Ms,N}	[-]	25 0, 0,	1,0 · See Ta 75	N _{Rk,s} able C1 0, 0, 0,	95 75
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and under the failure of	γ _{Ms,N}	[-]	25 0, 0,	1,0 · See Ta 75 60 75	N _{Rk,s} able C1 0, 0, 0,	95 75 95
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and understance	γMs,N cracked cor τRk,C2	[-] ncrete C20/2 [N/mm²]	25 0, 0,	1,0 · See Ta 75 60 75 60 1	N _{Rk,s} able C1 0, 0, 0, 0,	95 75 95
Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and under the pull-out and concrete failure Characteristic bond resistance in cracked and under the pull-out and concrete failure Characteristic bond resistance in cracked and under the pull-out and concrete failure Dry and wet concrete Flooded bore hole Increasing factor for concrete Characteristic bond resistance depending on the concrete strength class	γMs,N cracked cor τRk,C2	[-] [-] [-]	25 0, 0,	1,0 · See Ta 75 60 75	N _{Rk,s} able C1 0, 0, 0, 0,	95 75 95
Steel failure Characteristic tension resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70 Partial factor Combined pull-out and concrete failure Characteristic bond resistance in cracked and understance	γMs,N cracked cor τRk,C2	[-] [-] [-]	25 0, 0,	1,0 · See Ta 75 60 1 Ψ _c • τ _{Rk,0}	N _{Rk,s} able C1 0, 0, 0, 0,	95 75 95

			M8	M10	M12	M16
Steel failure without lever arm		I				l
Characteristic shear resistance (Seismic C1)	V _{Rk,s,C1}	[kN]		0,7 •	V ⁰ Rk,s	
Characteristic shear resistance (Seismic C2) Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, Strength class ≥70	V _{Rk,s,C2}	[kN]		ormance ssed	0,7 •	V ⁰ Rk,s
Partial factor	$\gamma_{Ms,V}$	[-]		See Ta	able C1	
Factor for annular gap	α _{gap}	[-]		0,5 (1,0)1)	

Table C14: Displacement	under ten	sion lo	oad			
Anchor size threaded rod			M8	M10	M12	M16
Uncracked and cracked concrete	under seism	ic actio	n (performance	category C2)		
Temperature range	$\delta_{\text{N,C2(DLS)}}$	[mm]			0,23	0,29
I: 40°C/24°C	δn,c2(ULS)	[mm]	No porformon		0,43	0,55
Temperature range	$\delta_{\text{N,C2(DLS)}}$	[mm]	No performan	0,23	0,29	
II: 80°C/50°C	δn,c2(ULS)	[mm]			0,43	0,55

Table C15: Displacement under shear load

Anchor size threaded rod		M8	M10	M12	M16				
Uncracked and cracked concrete under seismic action (performance category C2)									
Temperature range	δv,c2(DLS)	[mm]			3,6	3,0			
I: 40°C/24°C	$\delta_{\text{V,C2(ULS)}}$	[mm]	No porforman		7,0	6,6			
Temperature range	$\delta_{\text{V,C2(DLS)}}$	[mm]	No performar	ice assessed	3,6	3,0			
II: 80°C/50°C	δv,c2(ULS)	[mm]			7,0	6,6			

SCELLEMENT VINYLESTERE FIXH for concrete	
Performances	Annex C 11
Displacement under seismic action	
(Performance category C2)	