

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

Evaluation Technique Européenne

ETE-13/0437 du 18/06/2018

(Version originale en langue française)

Partie générale

Nom commercial Trade name

Famille de produit Product family SPIT MULTI-MAX

Cheville à scellement de type "à injection" avec tige d'ancrage diamètres M8, M10 et M12 pour fixation dans les

maçonneries.

Bonded injection type anchor with anchor rod sizes

M8, M10, M12, for use in masonry.

Titulaire *Manufacturer*

SPIT SAS

Route de Lyon

26500 Bourg-Les-Valence

FRANCE

Usine de fabrication Manufacturing plant

Société SPIT

Route de Lyon

FR-26501 BOURG-LES-VALENCE

Cette evaluation contient:

15 pages incluant 12 annexes qui font partie intégrante de

cette évaluation

This Assessment contains

15 pages including 12 annexes which form an integral part of

this assessment

Base de l'ETE Basis of ETA

EAD 330076-00-604, Edition juin 2014 *EAD 330076-00-604, Edition June 2014*

Cette evaluation remplace: AT This Assessment replaces ET

ATE - 13/0437 délivrée le 31/05/2013 ETA- 13/0437 issued on 31/05/2013

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

1 Description technique du produit

La cheville SPIT MULTI-MAX pour maçonneries est une cheville à scellement (type "à injection") utilisée avec un tamis creux ou un système ID-ALL et une tige filetée en acier au carbone électrozinguée ou en acier inoxydable. Ces éléments sont mis en place dans un trou foré préalablement rempli par une injection de mortier à deux composants en utilisant une cartouche avec buse de mélange statique. La tige filetée est introduite dans le mortier avec un léger mouvement de rotation. Les cartouches de mortier sont disponibles dans différentes tailles (410 ml à 280 ml). Le tamis creux ou le système ID-ALL ne sont pas utilisés pour les maçonneries pleines. Les figures et descriptions du produit sont données en Annexes A.

2 Définition de l'usage prévu

Les performances données en Section 3 sont valables si la cheville est utilisée en conformité avec les spécifications et conditions données en Annexes B.

Les dispositions prises dans la présente Evaluation Technique Européen reposent sur l'hypothèse que la durée de vie estimée de la cheville pour l'utilisation prévue est de 50 ans. Les indications relatives à la durée de vie ne peuvent pas être interprétées comme une garantie donnée par le fabricant, mais ne doivent être considérées que comme un moyen pour choisir les chevilles qui conviennent à la durée de vie économiquement raisonnable attendue des ouvrages.

3 Performance du produit

3.1 Résistance mécanique et stabilité (BWR 1)

Caractéristique essentielle	Performance
Résistance caractéristique en traction et cisaillement	Voir Annexes C1
Déplacements	Voir Annexe C2

3.2 Sécurité en cas d'incendie (BWR 2)

Non applicable

3.3 Hygiene, santé et environnement (BWR 3)

En ce qui concerne les substances dangereuses contenues dans la présente Evaluation Technique Européen, il peut y avoir des exigences applicables aux produits relevant de son domaine d'emploi (exemple: transposition de la législation européenne et des dispositions législatives, réglementaires et nationales). Afin de respecter les dispositions du Règlement Produits de Construction (EU) n° 305/2011, ces exigences doivent également être satisfaites lorsque et où elles s'appliquent.

3.4 Sécurité d'utilisation (BWR 4)

Pour les Exigences Essentielles de Sécurité d'Utilisation les mêmes critères que ceux mentionnés dans les Exigences Eessentielles Résistance Mécanique et Stabilité sont applicables.

3.5 Protection contre le bruit (BWR 5)

Non applicable

3.6 Economie d'énérgie et isolation thermique (BWR 6)

Non applicable.

3.7 Utilisation durable des ressources naturelles (BWR 7)

Pour l'utilisation durable des ressources naturelles aucune performance a été déterminée pour ce produit.

3.8 Aspects généraux relatifs à l'aptitude à l'emploi

La durabilité et l'aptitude à l'usage ne sont assurées que si les spécifications pour l'usage prévu conformément à l'annexe B1 sont maintenus.

4 Evaluation et vérification de la constance des performances (EVCP)

Conformément à la décision 2017/435/EC de la Commission Européenne¹, tel que amendée, le système d'évaluation et de vérification de la constance des performances (Voir Annexe V du règlement n° 305/2011 du parlement Européen) donné dans le tableau suivant s'applique.

Produit	Usage prévu	Niveau ou classe	Système
Ancrages métalliques pour la maçonnerie	Pour fixer et/ou soutenir les éléments structurels ou lourds en maçonnerie		1

Données techniques nécessaires pour la mise en place d'un système Evaluation et de vérification de la constance des performances (EVCP)

Les données techniques nécessaires à la mise en œuvre du système d'évaluation et de vérification de la constance des performances (EVCP) sont fixées dans le plan de contrôle déposé au Centre Scientifique et Technique du Bâtiment.

Le fabricant doit, sur la base d'un contrat, impliquer un organisme notifié pour les tâches visant la délivrance du certificat de conformité CE dans le domaine des fixations, basé sur ce plan de contrôle.

Délivré à Marne La Vallée le **18/06/2018** par Charles Baloche Directeur technique

Journal officiel des communautés Européennes L 435 du 15.12.2017

Produit mis en oeuvre

Figure A1 : Tamis en maçonnerie creuse

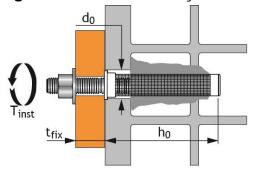
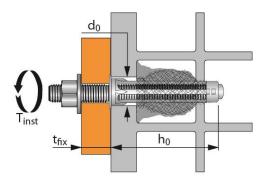



Figure A2 : Système ID-ALL en maçonnerie creuse

SPIT MULTI-MAX	Annexe A1
Description du système Schéma de mis en œuvre du système MULTI-MAX	

Système d'injection MULTI-MAX Cartouche 380 ml et 410 ml Cartouche 280 ml et 300 ml Embout mélangeur **Tamis** Système iD - ALL Tige filetée commerciale standard avec un marquage identifiant la longueur de scellement **SPIT MULTI-MAX Annexe A2** Description du système Résine, embout mélangeur, éléments d'ancrage

Tableau A1: Matériaux

Désignation	Matériau
Mortier d'injection	Résine méthacrylate, durcisseur et agents inorganiques
Éléments en acier électrozingués	
Tiges filetées M8 – M12 (Tige filetée commerciale standard)	Classe 5.8,6.8, 8.8, 10.9 EN ISO 898-1, Epaisseur de zinc ≥ 5µm NF E25-009,
Rondelle	Acier DIN 513 Epaisseur de zinc ≥ 5µm NF E25-009,
Ecrou	Acier, EN 20898-2 Classe 6 ou 8 Epaisseur de zinc ≥ 5µm NF E25-009,
Éléments en acier inoxydable A4	
Tiges filetées M8 – M12	Acier inoxydable A4-70: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 Selon EN 10088
Rondelle	Acier inoxydable A4-70: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
Ecrou	Classe 80 EN ISO 3506-2 Acier inoxydable 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 Selon EN 10088
Éléments en acier inoxydable à hau	te résistance à la corrosion (HCR)
Tiges filetées M8 – M12	Acier inoxydable HCR R _m ≥ 650 MPa Selon EN 10088, 1.4529 / 1.4565
Rondelle	Acier inoxydable HCR Selon EN 10088, 1.4529 / 1.4565
Ecrou	Acier inoxydable HCR R _m ≥ 650 MPa Selon EN 10088, 1.4529 / 1.4565

SPIT MULTI-MAX	Annexe A3
Description du système Matériaux	

Usage prévu

Matériaux supports:

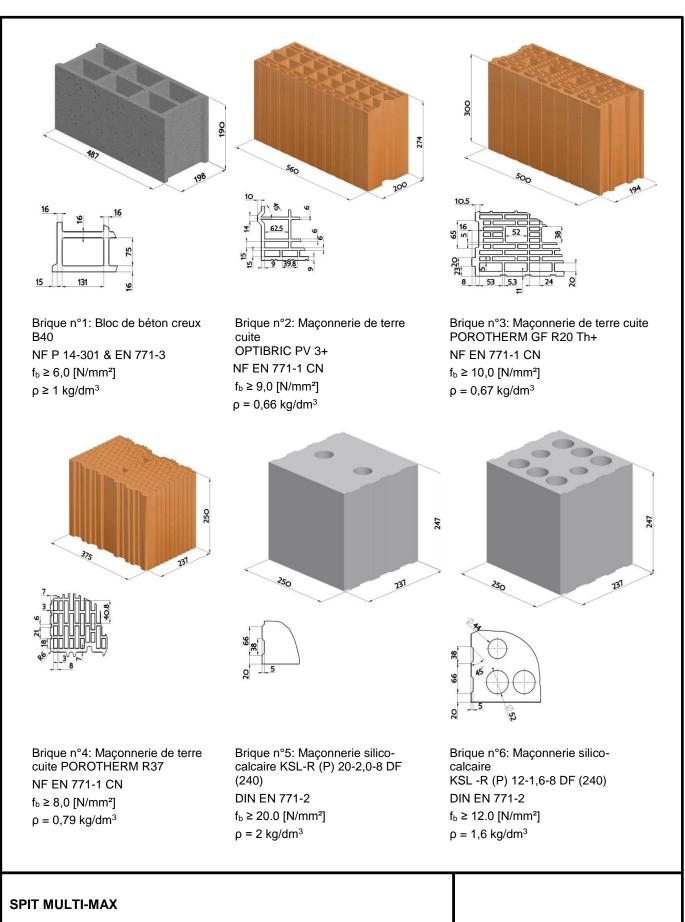
- Maçonnerie pleine, creuses ou perforée de catégorie b et c.
- Pour les autres maçonneries pleines, creuses ou perforées, les résistances caractéristiques peuvent être déterminées avec des essais sur chantier selon EOTA TR 054 avec le coefficient β donné dans le tableau C1 de l'annexe C3.

Tableau B1: Synthèse des categories d'utilisation et categories de performance

Ancrages		MULTIMAX		
Perçage du trou 🕒		percussion		
Chargements statiques ou quasi-statiques dans la maçonnerie pleine, creuse ou perforée		M8 à M12 Tableaux C1, C2, C3.		
Catégorie d'utilisation:		catégorie w/w : maçonneries sèches ou humide (trous inondés exclus)		
Températures d'installation		0°C à 40°C (tableau B4)		
Température en service	Plage de temperature:	-40°C à +40°C	(température max à long terme +24°C et température max à court terme +40°C)	

Conditions d'emploi (conditions d'environnement):

- Structures soumises à une ambiance intérieure sèche (acier zingué, acier inoxydable ou acier à haute résistance à la corrosion).
- Structures soumises à des ambiances intérieures continuellement humides:
 - Sans conditions particulièrement agressives (aciers inoxydable ou à haute résistance à la corrosion).
 - Avec conditions particulièrement agressives agressives (aciers à haute résistance à la corrosion).
- Structures soumises à une ambiance extérieure y compris atmosphères industrielle et marine :
 - Sans conditions particulièrement agressives (aciers inoxydable ou à haute résistance à la corrosion).
 - Avec conditions particulièrement agressives agressives (aciers à haute résistance à la corrosion).


Note: Des conditions particulièrement agressives sont par exemple l'immersion alternée et continue dans l'eau de mer ou zone soumise aux embruns, atmosphère contenant du chlore dans les piscines couvertes ou atmosphère soumise à pollution chimique extrême (par ex. à proximité d'installations de désulfuration de gaz et fumées ou dans des tunnels routiers avec salage l'hiver).

L'utilisation au plafond est autorisée.

Conception:

- Les ancrages sont conçus sous la responsabilité d'un ingénieur expert en ancrages.
- Des plans et notes de calculs vérifiables sont préparés en tenant compte des charges devant être ancrées. La position de la cheville est indiquée sur les plans de conception (e. g. la position de la cheville par rapport au support).
- Cette cheville ne doit être utilisée que pour la réalisation d'ancrages soumis à des charges statiques ou quasi-statiques, dans la maçonnerie pleine (catégorie d'utilisation b) ou dans la maçonnerie creuse ou perforée (catégorie d'utilisation c) selon l'annexe B2. La classe de résistance du mortier de la maçonnerie doit être M 2,5 au minimum selon la norme EN 998-2:2010.

SPIT MULTI-MAX	Annexe B1
Usage prévu - Spécifications	

Types de maçonneries et dimensions

Annexe B2

Brique n°1	(-0±())	M8- M10	
88		M8- M10	T _{inst} = 2.0 N.m
198		M12	
Brique n°2	0-0-	M8- M10	
4.0		M8- M10	T _{inst} = 2.0 N.m
10 77		M12	
Brique n°3	0-0-0-0	M8- M10	
300		M8- M10	T _{inst} = 3.0 N.m
500		M12	
Brique n°4	O-03	M8- M10	
98		M8- M10	T _{inst} = 3.0 N.m
203		M12	
Brique n°6	0-0-	M8- M10	
52		M8- M10	T _{inst} = 3.0 N.m
20 21		M12	
Brique n°5			
a second	-	M8- M10- M12	T _{inst} = 3.0 N.m

SPIT MULTI-MAX	Annexe B3
Répartitions des tiges, des tamis et des briques	

Tableau B2: Paramètres de mise en œuvre

Tamis			-		iD-ALL		Tamis perforé 15x130		Tamis perforé 20x85	
Tiges filetées	ées M8 M10 M12 M8 M10		M8 M10 M12		M8	M10	M12			
Diam. nom. du perçage	d_0	[mm]	10	12	14	16	16	15	15	20
Profondeur du trou	h ₀	[mm]	80	80	80	70	70	135	135	90
Profondeur d'ancrage effective	h _{ef}	[mm]	80	80	80	70	70	135	135	90
Diamètre de la brosse	-	[mm]	11	13	15	-	-	-	-	-
Couple de serrage	Tinst	[Nm]	Voir annexe B3							

Brosse en acier et procédure de nettoyage pour les maçonneries pleines

Nota : Pour les maçnneries creuses le nettoyage du trou n'est pas nécessaire.

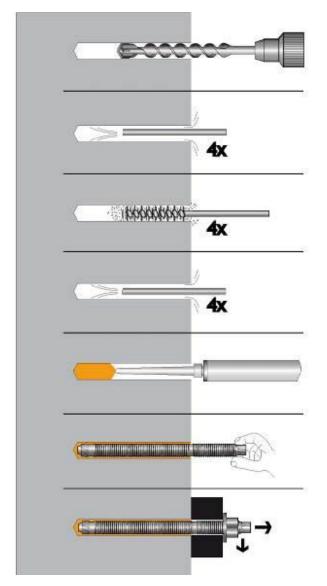
Tableau B3: Procédure de nettoyage pour les maçonneries pleines

Nettoyage Standard

- 4 opérations de soufflage +
- 4 opérations de brossage +
- 4 opérations de soufflage

Opérations de soufflage: A l'aide d'une pompe manuelle, souffler 4 fois en commençant par le fond du trou.

Opérations de brossage: A l'aide de l'écouvillon adapté au Ø de perçage, enfoncer l'écouvillon jusqu'au fond du trou, puis le ressortir


Tableau B4: Temps de prise minimum

Température du support béton	Temps d'utilisation	Temps de prise min. en béton sec
≥+ 0 °C	18 min	180 min
≥+ 5 °C	12 min	90 min
≥ + 10 °C	6 min	60 min
≥ + 20 °C	4 min	45 min
≥ + 30 °C	2 min	35 min

Note : la température de la cartouche doit être ≥ 0°C

SPIT MULTI-MAX	Annexe B4
Données d'installation	

Notice d'emploi : Mise en oeuvre en maçonnerie pleine

Réaliser un perçage de diamètre (d₀) et de profondeur (h₀) appropriés en utilisant un perforateur en rotation percussion

A l'aide la pompe manuelle SPIT, souffler 4 fois en commençant par le fond du trou jusqu'à ce que l'air évacué soit libre de poussière.

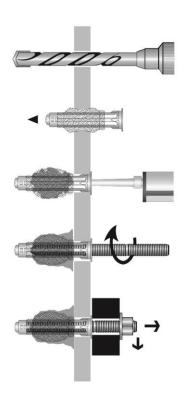
A l'aide de l'écouvillon adapté au \emptyset de perçage (\emptyset de brosse \geq diamètre de perçage d₀), enfoncer l'écouvillon SPIT jusqu'au fond du trou, puis le ressortir. Répéter l'opération 4 fois.

A l'aide la pompe manuelle SPIT, souffler 4 fois en commençant par le fond du trou jusqu'à ce que l'air évacué soit libre de poussière.

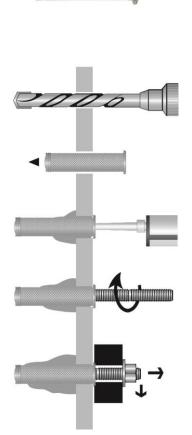
Visser l'embout mélangeur sur la cartouche et écarter les premières doses de mortier de chaque nouvelle cartouche jusqu'à obtention d'une couleur homogène. Utiliser un tube d'extension pour les trous de profondeur ≥ 250 mm. Remplir le trou uniformément à partir du fond. Déplacer la buse de malaxeur pas à pas pendant la pression; remplir le trou avec une quantité de mortier correspondant à ½ volume du trou.

Insérer immédiatement la tige filetée, lentement avec un léger mouvement de rotation en respectant le temps d'utilisation indiqué en tableau 4. Retirer l'excès de mortier autour de la tige. Contrôler la profondeur d'ancrage.

Laisser la cheville non sollicitée jusqu'à ce que le temps de prise soit écoulé. Attacher la pièce à fixer et serrer l'écrou au couple requit.


SPIT MULTI-MAX

Annexe B5


Instructions de pose en maçonnerie pleine

Notice d'emploi : Mise en oeuvre en maçonnerie creuse

- Le support doit être foré:
- en rotation/percussion pour les briques 1, 5 et 6;
- en rotation seule pour les briques 2, 3 et 4.
- Positionner manuellement le tamis iD-ALL dans le trou jusqu'à ce que la collerette soit en contact avec la paroi extérieure de la maçonnerie.
- Fermez le bouchon de centrage.
- Après mise en place de l'embout mélangeur iD-ALL sur la cartouche, enfoncer l'embout en butée dans le tamis et injecter la résine en appuyant sur le pistolet à six reprises.
- En tournant, insérer la tige filetée à fond.
- Après durcissement de la résine, installer la pièce à fixer et serrer au couple recommandé

- Le support doit être foré:
- en rotation/percussion pour les briques 1, 5 et 6;
- en rotation seule pour les briques 2, 3 et 4.
- Positionner manuellement le tamis perforé dans le trou jusqu'à ce que la collerette soit en contact avec la paroi extérieure de la maçonnerie.
- Fermez le bouchon de centrage.
- Après mise en place de l'embout mélangeur sur la cartouche, enfoncer l'embout en butée dans le tamis et injecter la résine en appuyant sur le pistolet à quatre reprises, puis ressortir la buse en arrière et appuyez quatre fois
- En tournant, insérer la tige filetée à fond.
- Après durcissement de la résine, installer la pièce à fixer et serrer au couple recommandé.

SPIT MULTI-MAX

Annexe B6

Instructions de pose en maçonnerie creuse

Tableau C1 : Résistance caractéristiques de traction et cisaillement

Brique n°	Résistance en compression	Tamis	Tige filetée	Profondeur d'ancrage effective h _{ef}	Résistance caractéristique		
					N _{Rk} 1)	V _{Rk} ^{2) 3)}	
	[N/mm²]			[mm]	[kN]	[kN]	
		iD-ALL	M8	70	2.0	2.5	
			M10	70	2.0	2.5	
1	6,0	15x130	M8	135	1.5	3.0	
			M10	135	1.5	3.0	
		20x85	M12	90	1.5	2.0	
		iD-ALL	M8	70	1.5	1.5	
		ID-ALL	M10	70	1.5	1.5	
2	9,0	15x130	M8	135	1.5	1.5	
		132130	M10	135	1.5	1.5	
		20x85	M12	90	2.5	3.5	
	10,0	iD-ALL	M8	70	0.9	4.0	
			M10	70	0.9	4.0	
3		15x130	M8	135	1.2	3.5	
			M10	135	1.2	3.5	
		20x85	M12	90	2.5	3.0	
	8,0	iD-ALL	M8	70	1.2	0.9	
			M10	70	1.2	0.9	
4		15x130	M8	135	2.0	1.5	
			M10	135	2.0	1.5	
		20x85	M12	90	0.9	4.0	
	20,0	-	M8	80	12.0	9.5	
5		-	M10	80	12.0	9.0	
		-	M12	80	12.0	12.0	
	12,0	iD-ALL	M8	70	1.5	9.0	
		ID-ALL	M10	70	1.5	11.0	
6		15x130	M8	135	3.0	9.0	
			M10	135	3.0	12.0	
		20x85	M12	90	3.5	10.0	
Coefficient	partiel de sécurit	2.	5 ⁴⁾				

SPIT MULTI-MAX	Annexe C1
Valeurs caractéristiques de résistance aux charges de cisaillement et déplacement pour tiges filetées	

¹⁾ Pour la conception selon TR54 : $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,pb} = N_{Rk,s}$ 2) Ruine de la pièce métallique et ruine locale de la brique: conception selon TR54: $V_{Rk} = V_{Rk,b} = V_{Rk,s}$

³⁾ Ruine au bord de la Brique: $V_{Rk,c}$ selon TR54

⁴⁾ En l'absence de réglementation nationale

Tableau C2 : Moment de flexion caractéristique

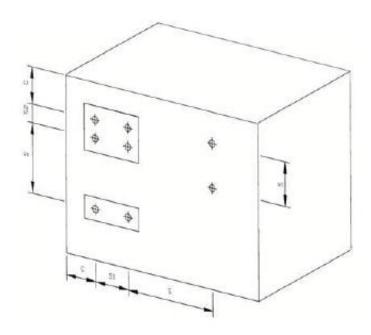
					M8	M10	M12
			5.8	[N.m]	18.7	37.4	65.5
Moment de flexion caractéristique	$M_{Rk,s}$	Classe de qualité	8.8	[N.m]	30.0	59.8	104.8
		,	A4-70	[N.m]	26.2	52.3	91.7
			5.8	[-]		1.25	
Coefficient partiel de sécurité	$\gamma_{\text{Ms,v}}{}^{1)}$	Classe de qualité	8.8	[-]		1.25	
		1	A4-70	[-]		1.56	

¹⁾ En l'absence de réglementation nationale

Tableau C3 : Déplacements sous charge de traction et cisaillement

Brique	Tamis	Tige filetée	Tension			Cisaillement			
N°			Charge Déplacement		Charge	Déplacement			
			F	δ_{N0}	δ _{N∞}	F	δ_{V0}	δ∨∞	
			[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	
	iD-ALL	M8		0.3	0.6		1.1	2.3	
	ID-ALL	M10		0.3	0.6		1.1	2.3	
1	15x130	M8		0.2	0.4		4.7	9.4	
		M10		0.2	0.4		4.7	9.4	
	20x85	M12		0.2	0.5		1.2	2.4	
	iD-ALL	M8		0.1	0.2		1.0	2.1	
	ID-ALL	M10		0.1	0.2		1.0	2.1	
2	15x130	M8		0.1	0.2		1.3	2.7	
		M10		0.1	0.2	$\frac{V_{Rk}}{1,4 \times \gamma_M}$	1.3	2.7	
	20x85	M12	$\frac{N_{Rk}}{1,4 \times \gamma_M}$	0.5	1.0		7.2	14.3	
	iD-ALL	M8		0.1	0.2		2.4	4.8	
3		M10		0.1	0.2		2.4	4.8	
	15x130	M8		0.2	0.3		2.6	5.1	
		M10		0.2	0.3		2.6	5.1	
	20x85	M12		0.2	0.4		4.9	9.9	
	iD-ALL	M8		0.7	1.4		0.5	0.9	
4		M10		0.7	1.4		0.5	0.9	
	15x130	M8		0.2	0.5		2.3	4.7	
		M10		0.2	0.5		2.3	4.7	
	20x85	M12		0.1	0.2		2.1	4.2	
	-	M8		0.2	0.5		0.8	1.6	
5	-	M10		0.4	0.8		0.5	1.0	
	-	M12		0.2	0.5		1.3	2.6	
	iD-ALL	M8		0.2	0.3		2.5	4.9	
		M10		0.2	0.3		2.5	4.9	
6	15x130	M8		0.3	0.5		1.8	3.5	
		M10		0.3	0.5		1.8	3.5	
	20x85	M12		0.1	0.2		0.5	1.1	

SPIT MULTI-MAX	Annexe C2
Valeurs caractéristiques des moments de flexion et déplacements	


Tableau C4 : β facteur pour essais réalisés sur site

Briques	Installation et utilisation	Tamis	Tailles	β facteur
		iD-ALL	M8 & M10	0.826
Tous types	w/w	15 x 130	M8 & M10	0.826
		20 x 85	M12	0.776

Tableau C5: Distances aux bords et entraxes

	Taille de cheville								
Drigues nº	M8			M10			M12		
Briques n°	C _{min}	S _{min,} ⊥	S _{min,}	C _{min}	S _{min,} ⊥	S _{min,}	C _{min}	S _{min,} ⊥	S _{min,}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	100	190	487	100	190	487	120	190	487
2	100	274	560	100	274	560	120	274	560
3	100	300	500	100	300	500	120	300	500
4	100	250	237	100	250	237	120	250	237
5	120	240	240	120	240	240	120	240	240
6	100	247	250	100	247	250	120	247	250

Nota: $s_{min} = s_{cr}$ et $c_{min} = c_{cr}$

SPIT MULTI-MAX	Annexe C3
β facteur Distances aux bords et entraxes	